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Intramolecular 1,3-dipolar cycloaddition between an alkyne and an azide leads to a series of 1,2,3-triazolo-
fused 1,4-benzodiazepines, 1,2,5-benzothiadiazepines, pyrrolobenzodiazepines and pyrrolobenzothiadiaze-
pines (eight examples). The products are privileged structures in medicinal chemistry. The precursor azido
alkynes are obtained, usually as transient intermediates, by treatment of the corresponding aldehydes
(derived from a-amino acids) with the Bestmann–Ohira reagent.

� 2010 Elsevier Ltd. All rights reserved.
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There is interest in the 1,4-benzodiazepine nucleus as a privi-
leged structure in medicinal chemistry, and hence new properties
and new routes continue to appear.1 Tricyclic benzodiazepines (see
Fig. 1) fused at the a-face such as flumazenil (1)2 and estazolam
(2)3 have achieved clinical success in the treatment of CNS disor-
ders, where the former, when 18F labelled, is also a useful ligand
for positron emission tomography.2e Benzodiazepines with a-fused
1,2,3-triazolo and tetrazolo rings have also attracted attention in
the medicinal chemistry literature.4 The pyrrolobenzodiazepines
(PBDs) such as DC-81 (3) and neothramycin (4) are sequence-spe-
cific DNA interactive antitumour antibiotics.5 The related bretaza-
nil (5) has attracted interest in the treatment of CNS disorders and
for its potential usefulness against neurodegenerative diseases.6

1,2,5-Benzothiadiazepines have attracted less interest than their
carbonyl analogues, but are nonetheless attractive targets with a
range of properties including potential as antiarrhythmic agents,7

tumour necrosis factor-a-converting enzyme (TACE) inhibitors8

and as hypolipidaemic agents,9 as discussed in a recent review.10

The related pyrrolobenzothiadiazepines such as compound (6)
have attracted interest as PBD analogues,10 as candidates for the
treatment of chronic myelogenous leukaemia11 and as non-nucle-
osidic reverse transcriptase inhibitors.12

As part of a programme of work focusing on new routes to benzodi-
azepines, benzothiadiazepines and pyrrolobenzothiadiazepines,13–16

we have recently shown that intramolecular 1,3-dipolar cycloaddition
ll rights reserved.
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ng).
between the azide and alkene moieties that are present in compounds
(7) and (8) allow access to aziridinopyrrolobenzodiazepines (9) and
aziridinopyrrolobenzothiadiazepines (10).17 In continuation of this
work, we report the results of our efforts with intramolecular azide
to alkyne cycloadditions and describe herein the synthesis of a series
of eight triazolo-fused 1,4-benzodiazepines, pyrrolobenzodiazepines,
1,2,5-benzothiadiazepines and pyrrolobenzothiadiazepines.

Our previous work with the alkene systems (7) and (8) began by
coupling the proline-derived unstable alkene (11) (Scheme 1) with
N3 N
8 X = SO2

10 X = SO2
H H

Figure 1. Important tricyclic and tetracyclic benzodiazepines.
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Scheme 1. Synthesis of tetracyclic PBD analogues.

Figure 3. Crystal structure for compound (29d).
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Scheme 2. Synthesis of triazolobenzodiazepine derivatives. Reagents and condi-
tions: (i) (COCl)2, CH2Cl2, rt, then L-amino alcohol, K2CO3, CH2Cl2, rt; (ii) (COCl)2,
DMSO, Et3N, CH2Cl2, rt; (iii) see Table 1.

Table 1
Triazolobenzodiazepines and triazolobenzothiadiazepines (29) produced via Scheme
223

Entry R/X % Yield
(26)

% Yield
(27)

% Yield (29)
[from (27)]

a i-Pr/SO2 55 72 83
b i-Pr/CO 88 70 77a

c PhCH2/SO2 81 65 73a

d PhCH2/CO 93 72 80a,b

e Indol-3yl-CH2/CO 90 40 54

a Intermediate (28) could be isolated in these cases. Cycloaddition was brought
about by heating the pure alkyne at reflux in chloroform.23

b Structure confirmed by X-ray crystallographic studies (see Fig. 3).21
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2-azidobenzenesulfonic acid or 2-azidobenzoic acid. We found the
corresponding approach with the alkyne derivative (12) tedious and
low yielding when we attempted to access the alkyne (12) from pro-
line (although this approach to a series of triazolopyrrolobenzodiaze-
pines has been reported recently18) and sought instead to access the
desired alkyne precursors (19) and (20), directly from the readily
available aldehydes (16) and (17). Thus, L-prolinol was coupled to 2-
azidobenzoic acid or 2-azidobenzenesulfonic acid to give the alcohols
(14) (mixture of rotamers) and (15) in yields of 79% and 96%, respec-
tively. Oxidation was best performed via the Swern protocol which
gave yields consistently in the 70–75% range (Dess–Martin oxidation
gave higher yields, but only when freshly prepared reagent was used).
The conversion of the aldehydes into the alkynes (19) and (20) was
achieved via the use of the Bestmann–Ohira reagent (18).19 In fact,
compounds (19) and (20) could not be detected and the only products
were the triazoles (21) and (22) which were isolated in 83% and quan-
titative yield, respectively. The structures of the final products were
determined by the usual spectroscopic techniques,20 but were con-
firmed by X-ray crystallographic studies (see Fig. 2).21
Figure 2. Crystal structure for compound (21).
We next extended our process to include a pyrrolobenzodiaze-
pine with the substitution pattern present in the natural products
DC-81 (3) and neothramycin (4). Thus, the readily available5 azido-
benzoic acid (13) (R1 = OMe, R2 = OBn, X = CO) was coupled to L-
prolinol to give the alcohol (23) in 87% yield with subsequent oxi-
dation giving the expected aldehyde in 65% yield. Reaction with
the Bestmann–Ohira reagent again proceeded with concomitant
cyclisation of the presumed intermediate alkyne (24) to form the
desired triazolopyrrolobenzodiazepine (25) in 84% yield.

With a successful protocol in place, we next extended it to ami-
no acids other than proline in order to show that we could provide
access to a short series of triazolobenzodiazepines and tria-
zolobenzothiadiazepines (29), as shown in Scheme 2 and Table 1.
The only similar reported approaches to triazolobenzodiazepines
are limited to the alkyne (12),18 as discussed above, or the use of
propargylamines in the coupling step (including an elegant Ugi se-
quence) rather than amino alcohols.4a,22 It is also noteworthy that
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Alajarín3b has reported a non-alkyne-based approach to tria-
zolobenzodiazepines. We are aware of no other published ap-
proaches to the triazolobenzothiadiazepines such as (22) and (
29a/c) (X = SO2).

We are currently exploring other intramolecular 1,3-dipolar
cycloadditions for the synthesis of tricyclic benzodiazepines and
benzothiadiazepines and tetracyclic pyrrolobenzodiazepines and
pyrrolobenzothiadiazepines.
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